Exercise 11

(a) Use the binomial formula (Sec. 3) and de Moivre's formula (Sec. 7) to write

$$
\cos n \theta+i \sin n \theta=\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \quad(n=0,1,2, \ldots) .
$$

Then define the integer m by means of the equations

$$
m= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (n-1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

and use the above summation to show that [compare with Exercise 10(a)]

$$
\cos n \theta=\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta \sin ^{2 k} \theta \quad(n=0,1,2, \ldots) .
$$

(b) Write $x=\cos \theta$ in the final summation in part (a) to show that it becomes a polynomial

$$
T_{n}(x)=\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} x^{n-2 k}\left(1-x^{2}\right)^{k}
$$

of degree $n(n=0,1,2, \ldots)$ in the variable $x .{ }^{*}$
[TYPO: A space is needed between " n " and "is." Oddly, this mistake wasn't in the 7th edition.]

Solution

Part (a)

The binomial theorem states that for two complex numbers, z_{1} and z_{2},

$$
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{k} z_{2}^{n-k} \quad(n=1,2, \ldots),
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Set $z_{1}=i \sin \theta$ and $z_{2}=\cos \theta$.

$$
(i \sin \theta+\cos \theta)^{n}=\sum_{k=0}^{n}\binom{n}{k}(i \sin \theta)^{k}(\cos \theta)^{n-k}
$$

Apply de Moivre's theorem on the left.

$$
\begin{equation*}
\cos n \theta+i \sin n \theta=\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \tag{1}
\end{equation*}
$$

[^0]Take the complex conjugate of both sides.

$$
\begin{equation*}
\cos n \theta-i \sin n \theta=\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(-i \sin \theta)^{k} \tag{2}
\end{equation*}
$$

Add the respective sides of equations (1) and (2).

$$
\begin{align*}
2 \cos n \theta & =\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k}+\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(-i \sin \theta)^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k}+\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \\
& =\sum_{k=0}^{n}\left[1+(-1)^{k}\right]\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \tag{3}
\end{align*}
$$

Notice that if k is odd, the summand is zero. The series can thus be simplified (that is, made to converge faster) by substituting $k=2 p$. Suppose first that n is even.

$$
2 \cos n \theta=\sum_{2 p=0}^{n}(2)\binom{n}{2 p} \cos ^{n-2 p} \theta(i \sin \theta)^{2 p}
$$

Consequently,

$$
\begin{equation*}
\cos n \theta=\sum_{p=0}^{\frac{n}{2}}\binom{n}{2 p} \cos ^{n-2 p} \theta(i \sin \theta)^{2 p} \quad \text { if } n \text { is even. } \tag{4}
\end{equation*}
$$

Suppose secondly that n is odd. Then equation (3) can be written as

$$
2 \cos n \theta=\sum_{k=0}^{n-1}\left[1+(-1)^{k}\right]\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k}+\underbrace{\left[1+(-1)^{n}\right]\binom{n}{n} \cos ^{n-n} \theta(i \sin \theta)^{n}}_{=0} .
$$

Substitute $k=2 p$ as before to simplify the series.

$$
2 \cos n \theta=\sum_{2 p=0}^{n-1}(2)\binom{n}{2 p} \cos ^{n-2 p} \theta(i \sin \theta)^{2 p}
$$

Consequently,

$$
\begin{equation*}
\cos n \theta=\sum_{p=0}^{\frac{n-1}{2}}\binom{n}{2 p} \cos ^{n-2 p} \theta(i \sin \theta)^{2 p} \quad \text { if } n \text { is odd. } \tag{5}
\end{equation*}
$$

If we define m to be

$$
m= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (n-1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

then equations (4) and (5) can be combined like so. (p is just a dummy variable and can be replaced with k.)

$$
\cos n \theta=\sum_{p=0}^{m}\binom{n}{2 p}(-1)^{p} \cos ^{n-2 p} \theta \sin ^{2 p} \theta
$$

Part (b)

The result of part (a) can be written as

$$
\begin{aligned}
\cos n \theta & =\sum_{p=0}^{m}\binom{n}{2 p}(-1)^{p}(\cos \theta)^{n-2 p}\left(\sin ^{2} \theta\right)^{p} \\
& =\sum_{p=0}^{m}\binom{n}{2 p}(-1)^{p}(\cos \theta)^{n-2 p}\left(1-\cos ^{2} \theta\right)^{p} .
\end{aligned}
$$

Let $x=\cos \theta$. Then $\theta=\cos ^{-1} x$, and the right side becomes a polynomial in x.

$$
\cos \left(n \cos ^{-1} x\right)=\sum_{p=0}^{m}\binom{n}{2 p}(-1)^{p} x^{n-2 p}\left(1-x^{2}\right)^{p}
$$

$T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$ are known as the Chebyshev polynomials.

[^0]: *These are called Chebyshev polynomials and are prominent in approximation theory.

